PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA (CCEN - PPGF)

CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA (CCEN)

Telefone/Ramal
Não informado

Notícias


Banca de DEFESA: ALILIANE ALMEIDA DE FREITAS

Uma banca de DEFESA de DOUTORADO foi cadastrada pelo programa.
DISCENTE: ALILIANE ALMEIDA DE FREITAS
DATA: 06/03/2015
HORA: 14:00
LOCAL: Auditório da Pós-Graduação em Física
TÍTULO: Propriedades Estruturais e Eletrônicas de Nanotubos de Carbono, BN e Híbridos BxCyNz: Um Estudo por Primeiros Princípios
PALAVRAS-CHAVES: NANOTUBOS, JUNÇÕES P-N, CAMPO ELÉTRICO, ESTRUTURA ELETRÔNICA, DFT, HIDROGÊNAÇÃO, NAOFIO DE CARBONO, ACHATAMENTO
PÁGINAS: 1
GRANDE ÁREA: Ciências Exatas e da Terra
ÁREA: Física
RESUMO: No presente trabalho, usamos cálculos de primeiros princípios baseados na Teoria do Funcional da Densidade, como implementado no código SIESTA, para investigarmos as alterações nas propriedades estruturais e eletrônicas de nanoestruturas hibridas, produzidas pela aplicação de campos elétricos externos, pelo achatamento da estrutura e pela adsorção de átomos de hidrogênio. Nós iniciamos com o estudo de nanotubos de nitreto de boro de parede dupla (DWBNNTs), zig-zag e armchair, com vetor quiral do tipo (8,0)@(16,0) e (5,5)@(10,10), respectivamente, dopados com átomos de carbono. Duas situações de dopagem foram consideradas: um átomo de C substituindo um átomo de B na parede interna (IW) e um átomo de C substituindo um átomo de N na parede externa (OW) o qual chamamos de CB[IW]@CN[OW], e a situação contraria resulta em CN[IW]@CB[OW]. Neste sentido, construímos um (semicondutor do tipo-p)@(semicondutor do tipo-n) ou um (semicondutor do tipo-n)@(semicondutor do tipo-p) e os DWBNNTs resultantes podem ser pensados como junções p-n. Paralelamente, aplicamos campos elétricos externos, com magnitude de 0,3 V/Å, em diferentes direções, ou seja, perpendicular (Ey), paralelo (Ex) e anti-paralelo (E-x) a linha formada pelos dopantes. Assim, dependendo da direção do campo aplicado, observamos um aumento ou diminuição do gap de energia entre os níveis de defeitos (Eig) e tais casos foram pensados como os casos de polarização reversa e direta da junção p-n, respectivamente. Seguimos, com o estudo da inserção de um nanofio de carbono (CNW) no interior de um nanotubo (10.0) zig-zag de carbono e no interior de um (10.0) zig-zag de BN. Tais sistemas foram chamados de CNW@SWCNT e CNW@SWBNNT, respectivamente. Nós produzimos o achatamento dos nanotubos e verificamos o comportamento da estrutura atômica do nanofio a medida que o achatamento do nanotubo aumenta. A partir dos resultados obtidos, foi possível concluir que para ambos os CNW@SWCNT e CNW@SWBNNT, existe uma distancia crítica dc (distância entre os planos paralelos dos nanotubos achatados (d)), com um valor de ≈ 3.60 Å, de tal forma que nós podemos resumir as nossas descobertas como: no caso de d > dc , o nanofio de carbono não sofre nenhuma deformação; e no caso reverso (d < dc ), o nanofio de carbono liga-se a parede do nanotubo e sofre deformações. Em relação as propriedades eletrônicas, verificamos que o encapsulamento do CNW nos SWCNT e SWBNNT, produz uma significativa redução do gap de energia (Eg) dos mesmos. Além disso, observamos a formação de pontos de Dirac para algumas taxas de achatamento dos nanotubos. Por ultimo, nós realizamos um estudo da adsorção de átomos de hidrogênio (hidrogenação) em nanotubos de parede dupla de nitreto de boro (DWBNNTs) e híbridos de nitreto de boro e carbono (DW(BN)xCyNTs). Devido ao fato dos nanotubos possuírem duas paredes, consideramos os seguintes casos: (i) coberturas de 2H, 4H, 8H, 12H e 16H na parede interna, (ii) coberturas de 2H, 4H, 8H, 16H e 32H na parede externa e (iii) coberturas de 2H, 4H, 8H, 16H e 32H em ambas as paredes. Curiosamente, verificamos que em todas as coberturas de hidrogênio consideradas, uma forte deformação acumula-se nos locais de hidrogênio, fazendo a secção transversal dos nanotubos se transformar em diferentes formas poligonais: elipsoidal, retangular, hexagonal ou octaedral. Para coberturas de 16H e 32H apenas na parede externa, observamos que alguns hidrogênios se soltaram da parede formando moléculas de H2 isoladas sem orientação preferencial. Verificamos, em alguns casos, que os ângulos de ligação entre os átomos de B, N e H ou C e H, apresentam características da hibridação sp3. Com relação a estabilidade estrutural, verificamos que a adsorção de átomos de H em DWBNCNTs é mais favorável do que em DWBNNTs. Ademais, concluímos que é possível controlar o gap de energia dos nanotubos através do manejo da cobertura de hidrogênio
MEMBROS DA BANCA:
Interno - 1282121 - ALEXANDRE DA SILVA ROSAS
Externo à Instituição - ANTONIO GOMES SOUZA FILHO
Interno - 1132317 - FERNANDO JORGE SAMPAIO MORAES
Presidente - 1199631 - SERGIO ANDRE FONTES AZEVEDO
Externo à Instituição - SUZANA NOBREGA DE MEDEIROS