PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA (PPGEM)

UNIVERSIDADE FEDERAL DA PARAÍBA

Teléfono/Extensión
No Informado

Presentación


PRESENTACIÓN DEL PROGRAMA

El Programa de Posgrado en Ingeniería Mecánica (PPGEM) Stricto Sensu, el primer curso de Posgrado del Centro de Tecnología de la UFPB, fue creado en 1975 en nivel de Maestría y posteriormente, en 1995, fue creado el curso de doctorado.

Misión - El Programa de Posgrado en Ingeniería Mecánica tiene como misión la realización de actividades de enseñanza de Maestría y de Doctorado, de investigación de base y aplicada y desarrollo tecnológico, actuando en la frontera del conocimiento de las Ciencias Mecánicas.

Visión - Buscar excelencia en la formación de recursos humanos en el área de Ingeniería Mecánica impactando en el desarrollo científico/tecnológico nacional.

 

El PPGEM tiene como objetivo la formación de docentes, de investigadores y de ingenieros, con vistas a formar recursos humanos cualificados, incentivar la investigación y el desarrollo de estudios técnicos y científicos relacionados a las Ciencias Mecánicas.

La adquisición de competencias a lo largo del Curso de Maestría o Doctorado en Ingeniería Mecánica tiene como objetivos esenciales garantizar que los alumnos de maestría y doctorado, al final del curso y después de la obtención del Diploma correspondiente, sean capaces de:

-Aplicar sus conocimientos y la respectiva capacidad de comprensión y de resolución de problemas en situaciones nuevas y no familiares, en contextos ampliados y multidisciplinarios;

-Capacidad para integrar conocimientos, lidiar con cuestiones complejas, desarrollar soluciones o emitir juicios en situaciones de información limitada o incompleta, incluyendo reflexiones sobre las implicancias y responsabilidades éticas y sociales que resulten de esas soluciones y de esos juicios o los condicionen;

 

LINES OF RESEARCH’S FIELDS AND DESCRIPTION

DYNAMIC FIELD AND CONTROL OF MECHANICAL SYSTEMS

Lines of Research

DYNAMICS OF MECHANICAL SYSTEMS – Studies, projects, and analyses aiming to solve mechanical systems problems under dynamic conditions. Development, modeling, and analyses of mechanisms. Studies on stability and applications to rigid and elastic mechanical systems. Studies and development of methodologies in methods of quantitative and qualitative methods of dynamic systems.

CONTROL OF MECHANICAL SYSTEMS – Studies on the development of automation techniques and control of dynamic systems. For example - solution of dynamics problems of mechanical systems (passive and active control of vibrations); analysis, synthesis, identification, implementation, and control of mechatronic systems in general; machine control and industrial systems, robotics, and study of adaptive systems.

INSTRUMENTATION OF MECHANICAL SYSTEMS – Development and use of instruments and equipment to measure, monitor, and register physical phenomena with the goal of promoting science, methods, functionality, and application of the measurement in mechanical systems. Project, development, and evaluation of instrumentation and measurement systems and components used in generation, acquisition, conditioning, and processing of signals of mechanical systems; analysis, representation, exposure, and preservation of information acquired from a set of mechanical systems measurements; maintenance and prediction engineering of mechanical systems; development and utilization of instruments for the analysis of the mechanical systems integrity; metrological analysis of mechanical systems.

 

FIELD – MANUFACTURING PROCESSES

Lines of Research

MECHANICAL/METALLURGICAL PROCESSES APPLIED TO MATERIALS – In this line of research, P&D activities are developed related to the various mechanical processes of metallic and ceramic materials and its composites, seeking to identify their correlation with the microstructural, mechanical, and physical-chemical characteristics. It aims at the full understanding of the inter-relation between processing, characterization, and properties. These processes are mainly welding, thermal treatments, hot and/or cold forming, high-energy milling, sinter plant, processing of ceramic and cement materials, melt-spinning, thermal deposits of post-metallic, and others. Also acting in the following themes: welding of steel for pipes; the phenomenon of Hydrogen-Induced Cracking in weld joints and the characterization of dissimilar joint welds.

 

QUANTIFICATION AND EVALUATION OF THE MATERIALS’ PROPERTIES – In this line of research, the processing of engineering materials is studied. It covers the structure of metallic alloys, primarily acting in the following subjects: characterization of amorphous alloys; nanostructured alloys, and alloys of quasicrystal alloys; shape-memory alloys, whereas such alloys are obtained through the induced welt, fast solidification and/or mechanosynthesis, magnetic properties of metallic alloys. The stage transformations in the solid state of shape-memory alloys. Thermomechanical processing  (thermomechanical properties and microstructure). Acquisition and characterization of titanium alloys for biomedical purposes and the Mechanical and microstructural Characterization of materials.

 

AREA OF THERMAL FLUIDS

Lines of Research

 

ALTERNATIVE SOURCES OF ENERGY – Line of Research that focuses on the usage and/or analysis of different kinds of primary energy sources, as an alternative form of its usage, both in direct use or in the transformation process to the production of Electrical Energy. It is also related to the application of the concepts of energetic efficiency and rationality, and environmental impact. In an overview, this line of research relates to the study of the primary alternative sources: wind energy, solar energy (photovoltaic), geothermal energy, tidal driving energy, Biomass, Biogas related to this.

 

HEAT AND MASS TRANSFER – Line of research focusing on the study, analysis, and projects related to the problems of complex transfer of heat and mass, involving various methods for a solution, including the broadest computational packages for the computational dynamics of open fluids and commercially acquired. The signs of progress of the available computational codes in the market of fluids dynamics and the convection have enabled tackling a range of engineering issues, and notably those from the petrol and gas engineering. This does not invalidate the advent of new codes for the solution of new and old problems, such as the extension of techniques and methodologies. In this sense, the codes have been used with powerful packages, and also expanded programs developed in Fortran for the multifluid outflow. Some monophasic and biphasic have sought solutions in the field of speed and temperature including variable thermal-fluid variables. In addition, it also has sought to examine the analyses, in a theoretical manner, of the outflow of long-pressure variable fluids, typical features of pre-salt fluids, and even the contamination situation found in sanitary landfills.

 

ANALYSIS OF HEAT AND MASS TRANSFER THROUGH GENERALIZED INTEGRAL TRANSFORM TECHNIQUE – Line of research focusing on the extension of the application of the Generalized Integral Transform Technique (GITT) to complex problems of Heat and Mass transfer when looking for Hybrid solutions. The problems of heat and mass transfer are often formulated through complex partial differential equations and are frequently subject to boundary conditions also complex since it constricts the solution from the mathematical perspective through simple analytical methods. These types of problems, most times, are tackled aiming to be solved through purely numerical procedures, which also represents additional difficulties in the process and extension for a deeper parametric analysis. The Generalized Transform Technique, as a powerful analytic-numerical hybrid math tool, allows the acquisition of explicit solutions, even demanding computational numerical procedures in its implementation. In this sense, it is possible to extend the parametric analysis with deeper understanding and visibility of the problems in which the traditional math techniques cannot reach. Various extensions of the technique sage concerning problems for the acquisition of parameters of practical interest have been performed, such as - Nusselt Number, frictional force, Sherwood number, among others.

 

REFRIGERATION AND EXERGETIC ANALYSIS – This Line of Research was first associated to the energy and exergy analyses and extended to exergoeconomic and exergoenvironmental analyses of the energy generation systems through thermal transforms, refrigeration systems through vapor absorption, in development, for the direct and indirect burning, with construction and analysis of prototypes. The analyses of thermal systems have expanded since the utilization of the first law provides us quantitative data and does not qualify nor ascertain the acuity of the process of analysis. The insertion of the exergetic analysis associated with the development of new technological devices added to the process the quality and possibility of identification of the highest irreversibility points. In the sequence, the association with monetary costs for such wastes has led us to the importance and need of energy and economic analyses for the exergoeconomic evaluations, which enables the study of the monetary and exergetic costs associated with each process or with the whole. The exergo-economic evaluations have been carried out in two branches: following the explicit ideas by Luzano – Valero and his followers with the Theory of Exergetic Costs, and, more recently, carrying out studies with satsaronis and the followers of both exergo-economic and exergo-environmental analyses, through the method of specific exergy costs, known as – SPECO.

 

ESTRUCTURA CURRICULAR

  

El programa de Posgrado Stricto Sensu en Ingeniería Mecánica, ofrece los Cursos de Doctorado y de Maestría Académica, siendo sus actividades distribuidas en tres áreas de concentración:

Termofluidos;

 

Procesos de Fabricación;

Dinámica y Control de Sistemas Mecánicos.

  

Las líneas de investigación del PPGEM son:

I - Termofluidos:

Análisis de la Transferencia de Calor y Masa vía Técnica Transformada Integral Generalizada;

 

Fuentes Alternativas de Energía; Refrigeración y Análisis Exergético; Transferencia de Calor y Masa.

 

Procesos Mecánicos/Metalúrgicos Aplicados a los Materiales; Cuantificación y evaluación de Propiedades de los Materiales.

Control de Sistemas Mecánicos; Instrumentación de Sistemas Mecánicos.

 

 

Para el nivel de Maestría, será exigido el mínimo de 22 créditos distribuidos de la siguiente forma:

en disciplinas y actividades académicas obligatorias del tronco común de las tres áreas - 8 créditos;

en disciplinas obligatorias por área de concentración: 6 créditos;

 

en el conjunto de disciplinas y/o actividades académicas opcionales por área de concentración: 8 créditos;

 

 Para el nivel de Doctorado, será exigido el mínimo de 35 créditos distribuidos de la siguiente forma:

en disciplinas y actividades académicas obligatorias del tronco común de las tres áreas: 13 créditos;

en disciplinas obligatorias por área de concentración: 6 créditos;

 

en el conjunto de disciplinas y/o actividades académicas opcionales por área de concentración: 16 créditos.

 

 DISCIPLINA DEL TRONCO COMÚN - Producción Científica (2 créditos);

 

ACTIVIDADES ACADÉMICAS DEL TRONCO COMÚN - Proyecto de disertación (2 créditos); Proyecto de tesis (4 créditos); Proyecto de investigación I (4 créditos); Proyecto de

 

investigación II (exclusiva del doctorado, 4 créditos); Proyecto de investigación III (exclusiva del doctorado, 3 créditos).

 

 DISCIPLINAS OBLIGATORIAS

 

Área de Termofluidos: Termodinámica (3 créditos) y Mecánica de los Fluidos (3 créditos)

 

Área de PROCESOS DE FABRICACIÓN: Metalurgia Física (3 créditos) y Estructura y Propiedad de los Materiales (3 créditos).

Área de DINÁMICA Y CONTROL DE SISTEMAS MECÁNICOS:

Servomecanismos y Control (3 créditos) y Control I (3 créditos).

 

DISCIPLINAS OPCIONALES

 

Área de TERMOFLUIDOS: Transferencia de Calor por Conducción (3 créditos); Transferencia de Calor por Convección (3 créditos); Refrigeración y Aire Acondicionado (3 créditos); Aprovechamiento de la Energía Solar (3 créditos); Análisis de la Difusión de Calor y Masa (3 créditos); Cogeneración (3 créditos); Refrigeración por Absorción (3 créditos); Temas Especiales (1 a 3 créditos).

 

Área de PROCESOS DE FABRICACIÓN: Termodinámica de los Materiales (3 créditos); Cristalografía y Difracción de Rayos-X (3 créditos); Tecnología de la Soldadura (3 créditos); Ensayos Mecánicos de los Materiales (3 créditos); Caracterización de los Materiales (3 créditos); Planeamiento de Experimentos (3 créditos); Procesamiento de Materiales Particulados (3 créditos); Transformaciones de Fases (3 créditos); Solidificación (3 créditos); Temas Especiales (1 a 3 créditos)

 

Área de DINÁMICA Y CONTROL DE SISTEMAS MECÁNICOS: Vibraciones

Mecánicas (3 créditos); Instrumentación (3 créditos); Identificación de Sistemas (3 créditos); Metrología Asistida por Computadora (3 créditos); Inteligencia Artificial (3 créditos); Optimización de sistemas (3 créditos); Temas Especiales (3 créditos).

 

Disciplinas OPCIONALES COMUNES A LAS ÁREAS DE CONCENTRACIÓN: Estudios

Especiales (1 a 4 créditos); Métodos Numéricos (3 créditos); Planeamiento de experimentos (3 créditos); Matemática aplicada (5 créditos); Adquisición y Procesamiento de Señales (5 créditos).

Actividad académica opcional: Pasantía de docencia.

 


Página Alternativa


Coordinación del Programa