A mineração de dados tornou-se uma importante atividade para a tomada de decisão para grandes ou pequenas corporações, pois a partir dela é possível extrair informações relevantes e não triviais de forma que correções e ajustes em estratégias econômicas e administrativas possam ser solucionados. Assim, vê-se um aumento no armazenamento de dados geográficos, de tal maneira que a mineração de dados convencionais não suporta realizar a extração de conhecimento em um banco de dados composto por estes tipos de dados. De acordo com a literatura atual, poucas ferramentas capazes de extrair conhecimento a partir de dados geográficos são encontradas, principalmente, quando a base de dados é composta por dados convencionais (numéricos e textuais) e geográficos (ponto, linha e polígono). Este trabalho tem como objetivo principal apresentar um novo algoritmo para a atividade de mineração de dados espaciais utilizando os dois tipos de dados para realizar a extração de informações de uma determinada base. O algoritmo em questão tem como base o algoritmo DMGeo que, por sua vez, também visa extrair conhecimento a partir dos dois tipos de dados. Estes algoritmos são baseados na Programação Genética e foram desenvolvidos a fim de obte regras de classificação de padrões existentes nos atributos numéricos e geográficos.