Com o advento da TV Digital interativa (TVDi), nota-se o aumento de interatividade no processo de comunicação além do incremento das produções audiovisuais, elevando o número de canais e recursos disponíveis para o usuário. Esta realidade faz da tarefa de encontrar o conteúdo desejado uma ação onerosa e possivelmente ineficaz. A incorporação de sistemas de recomendação no ambiente TVDi emerge como uma possível solução para este problema. Este trabalho tem como objetivo propor uma abordagem híbrida para recomendação de conteúdo em TVDi, baseada em técnicas de mineração de dados, integradas a conceitos da Web Semântica, permitindo a estruturação e padronização dos dados e consequente possibilidade do compartilhamento de informações, provendo semântica e raciocínio automático. Para o serviço proposto é considerado o Sistema Brasileiro de TV Digital e o middleware Ginga.