PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA (PPGI)

UNIVERSIDADE FEDERAL DA PARAÍBA

Telefone/Ramal
Não informado

Notícias


Banca de QUALIFICAÇÃO: GIOVANNI GOMES DA SILVA VAZ

Uma banca de QUALIFICAÇÃO de MESTRADO foi cadastrada pelo programa.
DISCENTE: GIOVANNI GOMES DA SILVA VAZ
DATA: 12/08/2013
HORA: 10:00
LOCAL: CCEN
TÍTULO: Estudo comparativo entre um Preditor de uma Random Forest em CUDA e os Preditores dos Algoritmos Random Forest original em Fortran e C4.5 original em C
PALAVRAS-CHAVES: Inteligência Artificial, Algoritmos de aprendizagem de máquina, Aprendizagem de máquina, Árvores de Decisão, Regras de Classificação.
PÁGINAS: 73
RESUMO:

A classificação ou predição, consiste na aplicação de algoritmos específicos para produzir uma enumeração particular de padrões, ou seja, a classificação é o processo de gerar uma descrição, ou um modelo, para cada classe a partir de um conjunto de exemplos de dados. Os métodos adequados e mais utilizados para induzir estes modelos, ou classificadores, são as árvores de decisão e as regras de classificação. As regras e árvores de decisão são populares, principalmente, por sua simplicidade, flexibilidade e interpretabilidade. Entretanto, como a maioria dos algoritmos de indução particionam recursivamente os dados, o processamento pode tornar-se demorado, e a árvore construída pode ser muito grande e complexa, propensa ao overfitting dos dados, que ocorre quando o modelo aprende detalhadamente ao invés de generalizar. Este trabalho apresenta o algoritmo de um preditor de uma Random Forest, capaz de tornar o desempenho de uma Random Forest bem mais eficiente, utilizando uma linguagem mais atual, que utiliza o conceito de processamento paralelo com GPUs, CUDA. No presente trabalho, também serão apresentadas, com detalhes, as árvores e regras de decisão, com suas técnicas e dois algoritmos muito conhecidos em aprendizagem de máquina: Random Forest implementado em linguagem Fortran e C4.5 implementado em linguagem C. Finalizando, o algoritmo proposto(o preditor de uma Random Forest em CUDA mais eficiente que o apresentado em Fortran), a validação e aplicação dos mesmos. 


MEMBROS DA BANCA:
Presidente - 2798885 - ANDREI DE ARAUJO FORMIGA
Interno - 1931204 - CHRISTIAN AZAMBUJA PAGOT
Interno - 1723491 - CLAUIRTON DE ALBUQUERQUE SIEBRA